If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-4x^2=-256
We move all terms to the left:
-4x^2-(-256)=0
We add all the numbers together, and all the variables
-4x^2+256=0
a = -4; b = 0; c = +256;
Δ = b2-4ac
Δ = 02-4·(-4)·256
Δ = 4096
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4096}=64$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-64}{2*-4}=\frac{-64}{-8} =+8 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+64}{2*-4}=\frac{64}{-8} =-8 $
| 10-5x=10+3x | | 3k=k^2-3k | | 1/2p-4=5 | | 3x+11(12x-5)=0 | | (3y+1)(1+y)=0 | | 3x^2=7500 | | -1t-12=60 | | 2^x=3000^3 | | X-11=x+9/5 | | 0=−3x^2+4x | | 0=−3x2+4x | | X+x^2+1.25=0 | | 10/x-6=-5/3 | | 5(y-4)=3(y+7)-9 | | 2x^2−13x−24=0 | | 36–2w=80–3w | | x+1=2x–5 | | 6y+10=9y6y+10=9y6y+10=9y6y+10=9y6y+10=9y6y+10=9y6y+10=9y6y+10=9y6y+10=9y | | -16+x=-1/5 | | -5/4(x+2)^2+5=0 | | 0.35x+0.85(10−x)=4 | | 3/5v+8=2 | | 2x+3=4-(6x-3) | | 100=2x+x^2 | | 1/4y-2=-4 | | 2^k=25 | | (x+5)÷2+(3x-3)÷8=0 | | x+5/2+3x-3/8+4=0 | | 20x^2=2-3x | | 64x^2-46x+6=0 | | 2x^2+4x=44 | | 5m^2+7m−6=0 |